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Results obtained previously [1, 2], which are applicable to mechanical systems containing non-conservative positional forces, are 
developed and generalized. The necessary and sufficient conditions are formulated for the transition to a certain matrix equation, 
the use of which enables one to overcome the difficulties associated with the existence of non-conservative positional structures 
in the initial equations. The above-mentioned conditions are expressed directly in terms of the matrix coefficients of the initial 
equation. This technique is used to analyse the exact equations of a four-gyroscope vertical (without using the equations of 
precessional theory) under the assumption that it is mounted on a base which moves with respect to the Earth. © 2001 Elsevier 
Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A matrix equa t ion  o f  the fo rm 

JJi + (D + HG)2 + (H + P)x = X(x,  x) (1.1) 

is considered,  where  x = col(x1, . . . ,  Xm) is a required vector,  J = jT ,  D = D T, G = - G  r, H = I-I T, P = 
_ p r  (the superscript  T denotes  transposit ion) are constant  m × m  matrices, X(x, Yc) is an m-dimensional  
co lumn vector  containing the componen t s  of  the vectors  x and ~ to powers higher than the first power 
and H > 0 is a certain large scalar parameter .  The  matrices J and D are assumed to be positive definite 
and the matrices G and P are non-degenera te .  

Equa t ion  (1.1) describes the per tu rbed  mot ion  of  mechanical  systems acted upon  by dissipative, 
gyroscopic, potent ial  and non-conservat ive posit ional forces. In  systems with gyroscopes, J must  be 
unders tood  as the matrix of  the total moments  of  inertia with respect  to the corresponding axes. 

The substi tution 

x = L~ (1.2) 

has been  used previously in [1]. This leads to the equat ion  

J I~  +[2JL + ( D +  HG)LI~ +[J£ + ( D +  HG)L +(n + P)LI~ = (1.3) 

where E is a column vector containing the components  of  ~ and ~to powers higher than unity. Satisfaction 
of  the condi t ion 

DL + PL = 0 (1.4) 

enables one  to el iminate the matrix P f rom Eq. (1.3). W h e n  condit ion (1.4) is taken into account,  
Eq. (1.3) can be reduced,  apart  f rom the non-l inear  vector  E, to the form [1] 

~ +  Q~ + R~ = 0 (1.5) 

where 

Q = L-1VL, R = L-1WL (1.6) 

V = J - I ( D + H G ) + 2 A ,  W = A 2 + J - I ( I - I + H G A ) ,  A = D - I p  r (1.7) 
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It follows from representations (1.6) that the matrices V and Q and W and R respectively are related 
by a similarity transformation. 

Turning to Eq. (1.5) and expressions (1.6) and (1.7), we note that, when the relations 

V = L-I(t)VL(t), W= L-I(t)WL(t), 'v ' t~0 (1.8) 

o r  

L(t)V = VL(t), L(t)W = WL(t) (1.9) 

are satisfied, that is, when the matrices L(t) and V and L(t) and W respectively commute, Eq. (1.5) is 
considerably simplified and has the form 

~+V~+ W~=O (1.10) 

which contains V and W as constant matrix coefficients of ~ and 4. 
Multiplying Eq. (1.10) on the left by J, we have 

(1.11) 

If the matrix W1 is symmetrical (there are no non-conservative positional structures) and the matrix V1 
depends on dissipative and gyroscopic forces, then direct application of the Thomason-Tait-Chetayev 
theorems [3, 4] to Eq. (1.11) is permissible. 

The formulation of the problem of obtaining the conditions, which are expressed by means of the 
matrices occurring in the initial equation (1.1), for which relations (1.8) and (1.9) are identically satisfied 
and lead to Eq. (1.11), is therefore natural. 

2. THE C O N D I T I O N S  OF R E D U C I B I L I T Y  TO EQ. (1.11) 

We consider condition (1.4), which can be represented in the form of the matrix equation 

L = AL (2.1) 

where A is defined by (1.7) From this, we have 

L = earL(0) (2.2) 

where the matrix L(0) corresponds to the initial value of t. 
When L(t) and L(t) are bounded in the interval [0, ~ )  and, also, when [det L(t) I ~ 8 > 0, the matrix 

L will be a Lyapunov matrix. Transformation (1.2) then does not change the stability properties of the 
linear part of Eq. (1.1). 

It can be shown that, with the assumptions which have been made concerning the matrices D and P 
and when L(0) = E (E is the identity matrix), the solution of the Cauchy problem for Eq. (2.1) will 
b e  a Lyapunov matrix. In fact, since the matrix D is symmetrical and positive definite, the unique, 

. . . . .  1 - I  F • symmetrical and positive defimte matrices D/2 and D 2 exast [5]. The notation 

la(t) = D~L(t) o ~ ,  Pl = - D - ~ P D - ~  (2.3) 

is used. Then, the Cauchy problem for (2.1) takes the form 

Ll(t ) = PiLl(t), /.t(0) = D (2.4) 

Here, the matrix P1 remains skew-symmetrical. Taking relations (2.3) and (2.4) into consideration, we 
now have 

L(t) = D -½ exp(Ptt)D ~ (2.5) 

The estimates for the norms of the matrices L(t) and L(t) follow from Eq. (2.5): 
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IlL(t,ll IID-} I] [[exp(Pl,)[I IIo 11 -- IIo MI 
IIL,, I <- IIo It n Ilexp(Plt'][ H--IIo u ,a H ,  Vt ~ 0 (2.6) 

The identity 

~exp(Plt~l-- 1 (2.7) 

has been used here. 
The correctness of this identity can be verified by making use of the representation of the Euclidean 
norm IIA II of a real matrixA = [[aij [I [61 

,IAII ( ~ 'aij123 ½ = = [tr(AA r)]Y2 (2.8)  
i , j = l  

where (,4A r) is the trace of the matrixAA r. AssumingA = exp(Plt) in representation (2.8), we arrive 
at identity (2.7), since P1 = -P1 r. 

Estimates (2.6) confirm the boundedness of L(t) and L(t) in the interval [0, 0o). Now, from (2.5), we 
have 

det L(t) = det D -k~ det[exp(Pit)]det D ½ -= 1 

since, according to the Jacobi identity [6], 

det[exp(Plt)] = exp(t- tr Pl) = 1 

Thus L(t) is a Lyapunov matrix. 

Theorem. Suppose P and G are arbitrary, non-degenerate, skew-symmetrical matrices and that J, D 
and I-I are arbitrary symmetrical matrices and, moreover, the matrices J and D are positive definite. 
Then, to satisfy conditions (1.8) and (1.9) for any H > 0, it is necessary and sufficient to satisfy the 
conditions 

PJ-I D = DJ-1P, PD-IG = GD-' P, PD-II'I = I'ID-1P (2.9) 

Proof. The structure of the matrices P, G, J, D and H, indicated in the formulation, as well as the 
positiveness of the parameter H, have been specified in Section 1. We assume that the commutation 
conditions (1.8) are satisfied or, what is the same thing, that (1.9) is satisfied. Using the representation 
of  a matrix exponent, we have the solution of Eq. (2.3) in the form 

I 
L(t)= Y. (D-'pr)t~L(O) (2.10)  

1=0 

which holds for any finite t. Taking Eq. (2.10) into account, we obtain from relations (1.9) the equalities 

D-IPV_VD-IP=O, D-ZPW_WD-zP=O 

Using formula (1.7) and separating terms containing the large parameter H as a factor, we write the 
resulting equalities in the form 

D-I  p j-1D _ j - I  p + H(D-tpj-IG _ j-1GD-lp) = 0 

D-I PJ-~FI - J-11-ID-I P -  H( D-I pj- 'G - J-IGD-I P)D-I P = 0 (2.11) 

Expressions (2.11) must hold for any H > 0. This is only possible when the following equalities hold 

D-~ pj-i  D= j-1p, D-Z pj-IG = j-~GD-I p, D-z pj-Zri = j-lrlD-~ p (2.12) 
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Conditions (2.9) are now easily obtained. Multiplying the first of Eqs (2.12) on the left byD, we arrive 
at the first of conditions (2.9). Next, multiplying the first of Eqs (2.12) on the right by D -1, we obtain 
D - a P J  -1 = J -1pD-1 .  When account is taken of the resulting condition, the second and third of Eqs (2.12) 
reduce to the second and third conditions of (2.9)respectively. This proves the necessity. 

Now, suppose conditions (2.9) are satisfied. Using formulae (1.7) and (2.12), we verify the correctness 
of the expressions 

D - ~ P V  - V D - I P = O ,  D - 1 P W  - W D - I p = o  (2.13) 

Since, according to Eq. (2.10), the matrix L is uniquely connected with D-1P,  the matrix L will also 
commute with Vand W. Conditions (2.13) then reduce to conditions (1.9). 

This proves the sufficiency and, consequently, the correctness of the theorem. 
Note that conditions (2.9) are necessary and sufficient only in order that equations (1.5) should reduce 

to the form (1.11). However, they do not state anything regarding the properties of the matrix W1. The 
essential property of this matrix in investigating the stability of Eq. (1.11) is its symmetry. The following 
assertion can be verified. 

L e m m a .  In order that the matrix W 1 in Eq. (1.11) should be symmetrical, it is sufficient that the first 
two of conditions (2.9) are satisfied. 

Proof. Using expressions (1.7) and the first two conditions of (2.9) and, also, taking into account the fact that 
the matrix FI is symmetrical by definition, that is, H = FI T, we have 

W 1 - w1 r = J w  - ( J W )  T = J ( D  -I p ) 2  _ H G D - I  p _ ( p D - I ) 2  j + H P D - l G  = 

= ( j D  -1 p)D -1 p -  pD -1 (pD -1 J) + H ( P D - I G  _ GD -1 P) = 

= p D - I j D - l p _  p D - I j D - I p = o  (2.14) 

which it was required to prove. 

Condition (2.14) confirms the fact that there are no non-conservative structures in the composition 
of the matrix Wv It thereby justifies the legitimacy of using the corresponding Thomson-Tait-Chetayev 
theorem. 

When there are no forces with overall dissipation and there are no arbitrary gyroscopic forces occurring 
in V 1, the positive definiteness of the symmetrical matrix W1 corresponds to the stability of the (non- 
asymptotic) trivial solution of Eq. (1.11) under the above-mentioned conditions. In this case, the addition 
of forces with overall dissipation and arbitrary gyroscopic forces imparts, by the Thomson-Tait-  
Chetyev theorem, the property of asymptotic stability to Eq. (1.11). 

3. A F O U R - G Y R O S C O P E  V E R T I C A L  

In the light of the theory presented in Sections 1 and 2, a more general version (compared with that 
analysed earlier [1]) of a four-gyroscope vertical, which has been set up on a base which moves with 
respect to the Earth, is considered below. 

The system is a platform set up in gimbals and this platform is stabilized in the horizon by means of 
four identical gyroscopes with the vertical axes of their housings. The gyroscopes are connected pail-wise 
by antiparallelograms which ensure that the gyroscopes turn in the plane of the platform through equal 
angles in opposite directions. Each pair of gyroscopes is connected by means of a spring to the internal 
framework of the gimbals. It is assumed that the centre of mass of the system is located below its 
geometric centre. 

The platform is controlled by a special correction system which works out the corresponding moments 
with respect to the axes of the platform and the housings of the gyroscopes. A detailed description of 
a four-gyroscopic vertical as well as the theory within the framework of precessional formulations are 
discussed in [7]. The stability of one of the versions of a four-rotor, gyro-horizon for the case of a fixed 
mounting has been investigated using the complete equations (taking inertial terms into account) by 
the direct Lyapunov method [8]. 

The case of a moving point of support, which is applicable to the complete equations, is considered 
below under the assumption that the base circulates at a linear velocity which is constant in magnitude. 



The theory of gyroscopic systems with non-conservative forces 685 

In this case, the equations of motion of the system under consideration in the notation employed in 
[1] have the form [7] (we neglect the insignificant effect of the diurnal rotation of the Earth) 

Ji)/i +blx I +2H,~ 2 + 2H(ox 3 + s i x  2 + P l x  I = _ p l  uO) 
g 

J2£2 +b2x 2 - 2H.i" I + 2Htox  4 +C,X 2 --S2X 1 =0 

J2x3  + b2x 3 + 2H,~ 4 + 2H0ax I + cx  3 - s2x 4 ----- 2H u (3.1) 
R 

JaJ/4 + bak 4 - 2Hk 3 + 2Hoax 2 - s ix  s + PIx  4 = 0 

where Xl, x4 are the angles of inclination of the platform from the plane of the horizon, x2, x3 are the 
angles of inclination of each of the pairs of gyroscopes with respect to the vertical axes of their housings, 
H is the intrinsic angular momentum of the gyroscope, sl, s2 are the positive coefficients of proportionality 
in the moments of the controlling correction, bl, b3, b2 are the coefficients of viscous friction in the axes 
of the platform and the gyroscopes respectively, c is the coefficient of rigidity of the springs connecting 
the housing of the gyroscopes with the internal framework and P l  is the pendulum moment of the system. 

Equation (3.1) are relative to a reference trihedron 0~'q~, with origin at the centre of the suspension, 
associated with the trajectory of motion of the mounting. In this case, v and o) denote the linear velocity 
of the suspension point relative to the Earth and the angular velocity of circulation. 

The equilibrium positions of system (3.1), which are henceforth denoted byx~,(n = 1 . . . . .  4), corres- 
pond to the velocity deviators of the gyro-vertical and are determined by the equation 

Mx* = F (3.2) 

where 

. . HM,, I X*=COI(X I . . . . .  X4), M =  2H(oE M 2 

II  '11 M :II c, s2 I M I  = - s  2 c ' - s  I P l  

Using the substitution Xs = x~ + ys, where x~ satisfy Eq. (3.2), system (3.1) reduces to a homogeneous 
system of equations in the variables y~ which is a special case of Eq. (1.1). We have 

y=coI(yl  . . . . .  Y4), J=diag(J l ,  J2, J2, J3), D=diag(bl,  b2, b2, b3) 

2 H ~ E  T 2 ' T l =  m c ' T2 = - m  P l  

s=½(sl +s2), m=½(sl-s2) 

(3.3) 

Turning now to conditions (2.9), we verify that the first of these conditions is satisfied in the case of the 
problem being considered if 

b , = p J s ,  s = l ,  2, 3 (3.4) 

where IX is a certain constant. 
We assume that the forces acting on the system, which are modelled by the matrix D in (3.3), are 

solely due to the small resistance of the medium. Then, conditions (3.4) comply with the previously 
adopted [1] Sommerfeld-Greenhill  concept. In this case, Ix > 0 can be understood as a small scalar 
parameter which depends on the properties of the medium. 
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In this case, the second of conditions (2.9) is satisfied. When relations (3.4) are taken into considera- 
tion, from the third condition we arrive at the equalities 

sl = s2, c J1 = PlJ2, Jl = "13 (3.5) 

The first of Eqs (3.5) specifies that the same correction characteristics are applicable to all of the 
coordinates Xs [8]. The second equality can be satisfied by the choice of the system parameters and, in 
particular, it has been used earlier [7] in the case when c = P l. The second of Eqs (3.5) can also be 
satisfied by putting c = 0, Pl = 0, which corresponds to there being no springs connecting the housings 
of the gyroscopes to the internal framework of the suspension and, also, to the fact that there is no 
pendulum effect (in this case, the system is assumed to be astatic). As it applies to the distribution of 
the masses presented in [8], we have 

J l = J { + 2 ( A ' + A k  +Bk),  J 2 = 2 ( A ' + A k ) ,  J 3 = J 3 + 2 ( A ' + A k  +Bk)  (3.6) 

where J~ = J;  are the equatorial moments of inertia of the frames with respect to the corresponding 
axes, At, Bk are the equatorial and polar moments of inertia of the housing and A'  is the equatorial 
moment of inertia of the rotor. It follows from expressions (3.6) that the third of conditions (3.5) is 
satisfied, ifJ~ = J;, that is, when the equatorial moments of inertia of the external and internal frames 
are equal. The equality J] = J;  can be achieved with a specified degree of approximation in the case 
of ring gimbals. 

If the masses of the rotors predominate considerably over the masses of the remaining suspension 
elements, then terms containing twice the value of the equatorial moment of inertia of the rotor will 
be the decisive terms on the right-hand sides of expressions (3.6). If only these terms are taken into 
account, it is generally possible to assume that 

J1 = J2 = J3 = 2 A "  

to which, by virtue of relations (3.4), the following relations correspond 

t ~ = b 2 = b 3 = b ,  P l = c  

Combining ourselves to this case for simplicity, we use Eq. (1.1) and formulae (1.7). Taking account of 
relations (3.4), we will have [1] 

Vl = D+hdiag(S ,  S), Wl=llcjk 1 (c# = ckj ) 
4 

h =21 . t - l (H~-s ) ,  cjj = c + 2 H b - l s - 2 A ' b - 2 s  2 (3.7) 

q 2 = c 2 a = q 4 = c : u = 0 ,  Cla=C24=2Hoa 

By Eqs (3.7) dissipative and gyroscopic forces occur in the composition of the matrix V1. Hence, when 
there are such forces, the positive definiteness of the matrix W1 imparts the property of asymptotic 
stability to the trivial solution of Eq. (1.11). Applying Silvester's criterion to the matrix W 1 we obtain 
the conditions 

b2c + 2(bH - A's)  > O, bZc + 2bH(s - boa) - 2A's  2 > 0 (3.8) 

Inequalities (3.8) contain, as a special case, the stability conditions for the system under consideration, 
which are restricted by the limits of precessional theory. In order to obtain these conditions in (3.8), 
it is necessary to neglect terms containing the quantity A '  as a factor. Then, when b ~ 0, the first of 
inequalities (3.8) is always satisfied. From the second inequality, we have the condition 

bc + 2H(s  - boa) > 0 (3.9) 

If c = 0, the condition s > boa is obtained from inequality (3.9), and this condition is identical to the 
well-known necessary condition for the stability of a four-rotor gyro-horizon with a radial correction [7]. 

It should be noted that, when c ~ 0, condition (3.9) is also satisfied when s ~< boa if bc > 
2H(boa - s). Hence, in this case, the existence of an elastic coupling between the gyroscopes and the 
internal frame in combination with a pendulum moment helps to reinforce the stability. 
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